If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x-1650=0
a = 2; b = -5; c = -1650;
Δ = b2-4ac
Δ = -52-4·2·(-1650)
Δ = 13225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13225}=115$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-115}{2*2}=\frac{-110}{4} =-27+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+115}{2*2}=\frac{120}{4} =30 $
| 1x+3x=24.4 | | 12p-11p-p+4p-p=15 | | 12-11n=48-7n | | -10+8p=3p+10 | | -2f-1=-1-2f | | 15x-6=-5-5x | | -3=3n=9 | | -3u+8=-8u-7 | | 9+7d=10d-9 | | -11-(1/2-10x)=8 | | 12y-15=4-7y | | 15u-10u+u=6 | | 2^(5x-4)=18 | | -2u=-u-10 | | 1250+27.5x=1400+20x | | 15g-14g=11 | | 6x-(-5x-7)=4 | | 4(2x-5)=2x+2(3x+10) | | 12-1/9n=16 | | 12y-15=7y-4 | | 12t-11t=20 | | 1250+27.5x=1400+20 | | 58+10x-5+16x+11=180 | | 10y-7y-4=31.49 | | X+x+(x+3)=180,x | | 4=-w-10 | | 3/5=x/50 | | 7-2x=23-8x | | √x+2=5 | | 5x-12-2=0 | | 5+2(n+n)=2n | | x+7x+15x=29x+18x |